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Abstract. In this survey paper we collect several known results on
destroying tall ideals on countable sets and maximal almost disjoint
families with forcing. In most cases we provide streamlined proofs of
the presented results. The paper contains results of many authors as
well as a preview of results of a forthcoming paper of Brendle, Guzmán,
Hrušák, and Raghavan.

Introduction and Notation

The goal of this survey is to provide an overview of the state of the art in
the area of destructibility and indestructibility of ideals on ω via various
forcing notions. The background narrative is the question which maximal
almost disjoint (MAD) families can be destroyed with mild forcing notions
and the existence of various exotic MAD families.
The survey appeared in its previous incarnation as part of the PhD

thesis [23] of the second author. The survey also contains several results
from an upcoming paper of Brendle, Guzmán, Hrušák and Raghavan [7].
We hope that the main contribution of this text will be a streamlined
presentation of related results which are scattered through the literature.

Our notation and terminology is fairly standard. We start by giving an
overview of basic notions used in this paper. We will deal mostly with
ideals of two types; ideals I on a countable set and σ-ideals J on the
Baire space ωω or the Cantor space 2ω. Although the ideals of the first
kind will be formally living on various countable sets such as the rationals
Q, ω2, 2<ω, ω<ω etc., we will casually pretend that the underlying set is
ω and we will establish our terminology and state theorems this way. We
will always assume that any given ideal contains the ideal of all finite sets
denoted by fin.
We say that an ideal I on ω is tall if for every A � [ω]ω there is I � I

such that A∩ I is infinite. Although we explicitly defined the notion of
tallness only for ideals, we will use it for other families of subsets of ω
as well. Such tall families are also synonymously called hitting. We will
generally assume that every ideal on ω is tall. In fact, destroying or
preserving tallness is the topic this survey is about.
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We adopt the standard notation, I∗ is the filter dual to I and I+ is
the collection of I-positive sets; P (ω) r I. We will generally adopt
the custom to use the same terminology for both properties of ideals
and properties of filters, i.e. we typically consider the statements “I
is Φ” and “I∗ is Φ” as synonymous. For a set H ⊆ P (ω) we denote
H⊥ = { x � [ω]ω p |x ∩H|<ω for each H �H }. For a tall ideal (or just a
hitting family in general) I define the cardinal

cov∗ I =min{ |H| pH ⊆ I,H is hitting }.
We call this invariant the covering number of the ideal.

Ideals can be naturally seen as subsets of the Cantor space 2ω andwe can
consider their topological properties. Let us recall a useful characterization
of Fσ ideals due to Mazur. A lower semicontinuous submeasure is a function
ϕ : P (ω) → [0,∞] such that ϕ (;) = 0; if A ⊆ B, then ϕ (A) ≤ ϕ (B)
(monotonicity); ϕ (A∪ B) ≤ ϕ (A) +ϕ (B) (subadditivity); and ϕ (A) =
sup{ϕ (A∩ n) p n �ω } for every A⊆ω (lower semicontinuity).
Proposition 1 (Mazur [44]). Let I be an Fσ ideal on ω. There is a lower
semicontinuous submeasure ϕ such that ϕ ({n }) = 1 for every n �ω, and
I = fin (ϕ).
We write A⊆∗ B if Ar B � fin. An ideal I on ω is a P-ideal if for every

countable C ⊆ I there exists I � I such that C ⊆∗ I for each C � C.
An important role in our considerations will be played by several defin-

able ideals on countable sets. Let us give here the definitions of ideals we
will need. All of these are easily seen to be tall. The ideal fin×fin ⊂ P

�

ω2
�

consist of all subsets of ω×ω which have only finite intersection with all
but finitely many columns. The ideal nwd consists of nowhere dense sets
of the rationals Q. The density zero ideal Z consist of all sets A⊂ω such
limn→∞

|A∩n|
n = 0. The ideal ED on ω2 is a sub-ideal of the ideal fin×fin;

it is generated by the columns and by graphs of functions. I.e. a set is in
ED if the size of its intersection with all but finitely columns is bounded
by some number n �ω. The ideal ED is an Fσ ideal.

An almost disjoint family or just an AD family is a set of infinite subsets
of ω such that the intersection of any two of its elements is finite. A MAD
family is an almost disjoint family which is maximal among AD families
with respect to the inclusion. As the finite MAD are of little interest to
us, we will always implicitly assume that any given AD family is infinite.
A straightforward application of the Kuratowski–Zorn lemma provides
an easy construction of MAD families. However, the situation is much
more interesting when we want to construct MAD families with additional
properties.
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For an AD family A we denote I(A) the ideal generated by A. Notice
that A is a MAD family iff I(A) is a tall ideal iff A is hitting. We will
generally adopt the custom that any terminology, cardinal characteristic,
etc. which we define for ideals will be naturally extended to AD families
via the ideal I(A). I.e. “A is Φ” means “I(A) is Φ.”

Notice that for a MAD family A we get cov∗A = cov∗ I(A) = |A|. For
an AD family A we define I++(A) to be the collection of sets X ⊆ω for
which there are infinitely many A � A such that A∩ X is infinite. I.e.
I++(A) ⊆ I(B)+ for every AD family B ⊇ A, and I++(A) = I(A)+ if an
only if A is MAD.
For every ideal I on ω there is a natural σ-centered forcing which

destroys I (as a hitting family), the Mathias–Příkrý forcing M(I), first
considered in [43]. Although the poset is usually defined in the language
of filters, we adopt here the dual language of ideals. The poset is defined
as M(I) =

�

(a, I): a � [ω]<ω, I � I
	

, and (a, I) ≤ (b, J) if b v a, J ⊆ I ,
and (ar b)∩ J = ;. The forcing adds a generic real g =

⋃

{ a p (a, I) � G },
where G is an M(I) generic filter. The generic real g destroys the ideal I;
g � I⊥.
Many standard forcings can be represented as quotient posets PI . If

I is a σ-ideal on the Baire space or the Cantor space, we denote PI the
quotient poset of I -positive Borel sets ordered by inclusion. These posets
come with a comprehensive theory [59] and will play a central role in
this paper.
The forcing PI adds a generic real which is defined as the unique

element in the intersection of the generic filter. Note that this real does
not belong to any Borel set in the ideal I coded in the ground model.
Reals with this property are called I -quasi-generic reals.
In particular, we will operate with the following σ-ideals and their

associated forcings. For details see [59].

M – the ideal of meager sets, PM is the Cohen forcing.
N – the ideal of Lebesgue null sets, PN is the random forcing.
S – the ideal of countable subsets of 2ω. PS is the Sacks forcing.
Kσ – the ideal generated by σ-compact subsets of ωω. PKσ is the

Miller forcing.
L – the ideal on ωω generated by sets of form

Ag = { f �ωω p (∃∞n �ω) f (n) � g( f � n) }

where g ranges over all functions from ω<ω to ω. PL is the Laver
forcing.
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Theorem 2 (Hernández-Hernández–Hrušák [26, Theorem 3.7]). For
every tall analytic P-ideal I the following inequalities hold;

addN ≤ cov∗ I ≤ nonM .

We will need the following definition, again see [59] for more informa-
tion on the presented facts.

Definition 3 (Hrušák–Zapletal [34]). Suppose I is an σ-ideal such that
the forcing PI is proper. The forcing PI has the continuous reading of
names if for every I -positive Borel set B and a Borel function f : B→ 2ω

there is an I -positive Borel set C ⊆ B such that the function f � C is
continuous.

The continuous reading of names is a common and extremely useful
property which is nevertheless somewhat ‘slippery.’ It is not really a prop-
erty of the forcing but rather a property of the particular representation
PI .

Whenever PI is proper ωω-bounding, or if I is σ-generated by closed
sets, then PI has the continuous reading of names. The following posets
do have continuous reading of names: Cohen, random, Miller, Laver,
Sacks. On the other hand, the poset for adding an eventually different
real does not have the continuous reading of names. The Mathias–Příkrý
poset M(I) does not have the continuous reading of names unless I is a
P-ideal, see [34].

Proposition 4 (Zapletal [59]). Let I be a σ-ideal on ωω such that PI has
the continuous reading of names. For every B � PI there is a Gδ set D � PI ,
D ≤ B.

Every ideal on the Baire or the Cantor space has a naturally associated
trace ideal. For a ⊆ ω<ω define π(a) = { x �ωω p (∃∞n �ω) x � n � a },
and similarly for a ⊆ 2<ω. For every a the set π(a) is Gδ and every Gδ set
is of this form.

Definition 5 (Brendle–Yatabe [12], Thümmel [58], Hrušák–Zapletal [34]).
For an ideal I on ωω the trace ideal tr(I ) of I is defined by a � tr(I ) iff
π(a) � I . For ideals on 2ω the definition is analogous.

The trace ideal tr(I ) is always a tall ideal, as long as the ideal I
contains all singletons. We will study the ideals tr(M ), tr(N ), tr(S ),
tr(Kσ), and tr(L ) in Section 1

Let us also establish some arboreal terminology. A tree T will generally
be an initial subtree of the tree of finite sequences of integers (ω<ω,⊆)
or (2<ω,⊆), usually with no leaves. The space of maximal branches of
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T is denoted [T]. For s � ω<ω we denote [s] = { f �ωω p s ⊆ f } and
¹sº = { t �ω<ω p s ⊆ t }. If a, b ⊆ ω<ω and for each s � a there is t � b,
t ⊆ s, we say that a refines b.

1. Destroying ideals

If I is a tall ideal and P is a partial order, we say that P destroys I if P
forces that I is no longer tall in the respective generic extension. I.e. if P
adds a new subset of ω that is almost disjoint with every element of I.
The following theorem is a collection of several results.

Theorem 6. Let P be a partial order.
(1) P destroys tr(S ) iff P adds new reals.
(2) P destroys tr(Kσ) iff P adds unbounded reals.
(3) P destroys tr(L ) iff P destroys fin×fin iff P adds dominating reals.
(4) P destroys ED iff P adds eventually different reals.

We postpone the proof of the theorem to page 10. The theorem may
suggest the following conjecture. If I is a σ-ideal onωω and P is a forcing,
then P adds I-quasi-generic reals if and only if P destroys tr(I ). The
forward implications of the conjecture does of course hold, however, the
other one may not, as demonstrated by the following example from [34].
The Mathias–Příkrý forcing of the tr(N ) ideal M (tr(N )) is a σ-centered
forcing which destroys tr(N ), but no σ-centered forcing can add an N -
quasi-generic real. We will later see that the problem here is that the
forcing M (tr(N )) does not have the continuous reading of names.

The Katětov order introduced in [35] is a powerful tool for classification
of ideals and their destructibility. Let I be an ideal on a (countable)
set X , J be an ideal on a (countable) set Y . We say that a function
f : Y → X is a Katětov morphism if f −1[A] � J for every A � I. If there
exists such Katětov morphism, we write I ≤K J (I is Katětov below
J ). It is easy to see that the Katětov order ≤K is indeed a reflexive and
transitive relation. If I ≤K J ≤K I, we say that the ideals are Katětov
equivalent; I 'K J . If I ≤K J 6≤K I, we write I <K J . There is a wide
amount of literature concerning the Katětov order, the reader may consult
e.g. [9, 19, 30, 31, 32, 45, 47, 52] for results related to the topic this
survey.

Let us mention a few basic properties of the Katětov order.
• If I ⊆ J , then I ≤K J . In particular, the Fréchet ideal fin is
Katětov below every ideal.
• I 'K fin iff the ideal I is not tall.
• If A � I+, then I ≤K I� A.
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If I 'K I�A for every A � I+, we say that the ideal I is Katětov uniform.
If the Katětov morphism in the definition of the order is moreover a fin-to-1
function, we talk about the Katětov–Blass order denoted ≤KB.
We extend these orders to AD families. For an AD family A we say

that A is Katětov above/below X if I(A) is Katětov above/below X . In
particular, an AD family A is MAD iff fin<K A. The Katětov–Blass order
is extended analogously.

Proposition 7 (Hrušák–García Ferreira [31]). A ≤K fin × fin for every
infinite AD family A.

Proof. Choose pairwise different {An p n �ω } ⊂ A and let f : ω×ω→
ω be any bijection such that f [{n } ×ω] ⊆ An for every n � ω. It is
straightforward to check that f is the desired Katětov morphism.

Lemma 8 (Hrušák–García Ferreira [31]). Let I,J be ideals such that
I ≤K J .

(1) cov∗J ≤ cov∗ I.
(2) If a poset P destroys J , then P destroys I.

Proof. Let f be the Katětov morphism. To prove the first clause, we can
assume that cov∗ I is witnessed by a hitting family H such that

⋃

H =ω.
Now

�

f −1[H] p H �H
	

⊆ J is a hitting family.
Assume that P forces that Ẋ is a name for an infinite set almost disjoint

with all elements of J . Then f [Ẋ ] is forced to be infinite and almost
disjoint with every element of I.

Corollary 9 (Hrušák–García Ferreira [31]). if A≤K B are MAD families,
then |B| ≤ |A|.

The following theorem is the key to understanding the relation between
many forcing notions and the destructibility of ideals. Particular instances
of the theorem were proved by various authors [12, 28, 38]. The crucial
assumption which failed in the M(tr(N )) example was the continuous
reading of names.

Theorem 10 (Hrušák–Zapletal [34]). Let I be a σ-ideal on ωω such that
PI is proper and has the continuous reading of names, and let J be an ideal
on ω. The following are equivalent:

(1) There is a condition B � PI which forces that J is not tall.
(2) There is a � tr(I )+ such that J ≤K tr(I )� a.

Proof. Suppose there is a as in (2), B = π(a) � PI , and let ṙ be a name
for the generic real. Since B � ṙ � π(ǎ), the set x = { s � a p s ⊆ r } is
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forced by B to be infinite. We claim that B forces the set x to be almost
disjoint with all elements of tr(I )� a. Let C ≤ B and d � tr(I )� a. The
condition C rπ(d) forces that r � π(d) and thus x ∩ d is at most finite.
The destruction of J now follows from the assumption on the Katětov
order.

To prove the other implication, assume there is a condition B � PI and
a name for an infinite set ẋ = { ẋn p n �ω } such that B forces that x is
almost disjoint with elements of J . Since PI has the continuous reading of
names, we can use Proposition 4 to recursively define antichains an ⊂ω<ω
for n � ω such that an+1 refines an, for a =

⋃

{ an p n �ω } is π(a) ⊆ B a
condition in PI , and for each s � an the set [s]∩π(a) is a condition which
decides ẋn to be some g(s) � ω. The function g : a → ω is the desired
Katětov morphism. Indeed, if d � (tr(I )� a)+, then π(d) � PI forces that
there for all n �ω there is s � an, s ⊂ r for the generic real r. Now g(s) � x
for each such s, g[d]∩ x is forced to be infinite, and g[d] � J .

We see that to classify destructibility we need to understand the traces
of ideals associated with forcings and their position in the Katětov order.

Lemma 11. The ideal tr(M ) is Katětov–Blass equivalent to nwd.

Proof. Let � be an ordering of Q of typeω. For s � 2<ω recursively choose
a clopen set of rationals Us and q(s) =min� Us such that

• U; =Q,
• Usá0, Usá1 is a partition of Us r {q(s) },
• Q= {q(s) p s � 2<ω }, and
• {Us p s � 2<ω } is a π-base of Q, i.e. for every open set O ⊆Q there
is s � 2<ω such that Us ⊆ O.

We claim that the bijection q is a Katětov morphism in both directions. Pick
N � nwd, we need to prove that π

�

g−1[N]
�

�M . Choose any s � 2<ω,
since N is nowhere dense and the sets Ut form a π-base, there is t ⊇ s
such that Ut ∩ N = ;. I.e. [t] ⊆ [s] and π

�

g−1[N]
�

∩ [t] = ;.
To prove the other direction pick a � tr(M ) and choose any s � 2<ω.

We need to find t ⊇ s such that g[a]∩Ut = ;. Since [s]∩π(a) is a meager
Gδ set, there is r ⊇ s such that [r]∩π(a) = ;. Thus there is t ⊇ r such
that ¹tº∩ a = ;, and consequently g[a]∩ Ut = ;.

To show that a given ideal J is indestructible with the forcing PI
we need to argue that J is not Katětov below restrictions of tr(I ). A
viable strategy to prove this is to show that the covering number cov∗ I is
consistently strictly smaller than the cov∗ numbers of restrictions of tr(I ),
and use Lemma 8 and an absolutness argument. Therefore it is useful
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to determine the covering numbers of the trace ideals. The following
proposition will help us with that.

Proposition 12 (Hrušák–Zapletal [34]). LetI be an ideal onωω generated
by analytic sets. Then covI ≤ cov∗ tr(I )≤max(covI ,d).

Proof. If H ⊂ tr(I ) is of size smaller than covI , there is x � ωω such
that x � π(H) for each H � H, and thus { x � n p n �ω } ∩ H is finite for
each H �H, the first inequality is proved.
Put κ = max(covI ,d). Let S be the set of functions f : ω<ω →

[ω<ω]<ω such that f (s) ⊆ ¹sº for each s � ω<ω. Since κ ≥ d, there
is a family of functions { fα � S p α � κ } such that for each g � S there is
α � κ such that g(s) ∪ { s } ⊆ fα(s) for each s � ω<ω. Since every every
analytic set is a union of at most d many compact sets and κ ≥ covI ,
there are is a set

�

Tβ p β � κ
	

of finitely branching subtrees of ω<ω such
that

⋃�

[Tβ] p β � κ
	

=ωω and [Tβ] � I for each β � κ.
Fix α,β � κ. We will recursively choose an increasing function k : ω→

ω and define finite sets aα,β(n) ⊂ω<ω such that
• k(0) = 0, aα,β(0) = fα(;),
• k(n+ 1)>max

�

|s| p s � aα,β(n)
	

, and
• aα,β(n+ 1) =

⋃�

fα(s) p s � Tβ , |s|= k(n+ 1)
	

.

Once this is done, let aα,β =
⋃�

aα,β(n) p n �ω
	

. Note that π(aα,β) =
[Tβ] � I .

Moreover, for every t �ω<ω and α � κ let bα,t =
⋃

{ fα(tán) p n �ω }.
We have that π(bα,t) = ;, i.e. bα,t � tr(I ). The set

�

aα,β p α,β � κ
	

∪
�

bα,t p t �ω<ω,α � κ
	

⊆ tr(I ) is of size κ, it remains to show that it is
hitting.

Let X ⊂ω<ω be an infinite set. Put

L = { s �ω<ω p ¹sº∩ X is infinite }.

Assume first that there exist a maximal s � L. Then

M = {n �ω p ¹sánº∩ X 6= ;}

is infinite, there is α � κ such that fα(sán)∩ X 6= ; for each n � M , and
bα,s ∩ X is infinite. On the other hand assume there is an infinite branch
r � [L]∩ [Tβ] for some β � κ. For each n �ω the intersection X ∩ ¹r� nº
is nonempty, and there is α � κ such that fα(r� n)∩ X is nonempty. Now
aα,β ∩ X is infinite.

Notice that the proof gives us, in fact, the following corollary.
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Corollary 13 (Hrušák–Zapletal [34]). Suppose that a forcing P does not
add unbounded reals, i.e. ground model reals are preserved as a dominating
family. Then P does not destroy the ideal tr(Kσ).

From Proposition 12 we get covM ≤ cov∗ nwd ≤ d. This can be
improved. The presented proof of the following theorem is based on the
proof in [3].

Proposition 14 (Keremedis [37]).

covM = cov∗ nwd= cov∗ tr(M )

Proof. The second equality follows from Lemma 11. To prove the first one
we need to show that cov∗ tr(M ) ≤ covM . Suppose that { Tα p α � κ }
is a family of trees in 2<ω such that [Tα] � M for each α � κ, and
κ < cov∗ tr(M ). Since tr(M )�¹sº is isomorphic to tr(M ) for each s � 2<ω,
there is infinite Y ⊆ ¹sº almost disjoint with each Tα, α � κ.
If there exists some Y like this such that π(Y ) 6= ; we are done since

π(Y ) ∩ [Tα] = ;, demonstrating κ < covM . Assume for contradiction
that there is no such infinite Y . Notice that this implies that each Y �
{ Tα p α � κ }

⊥ contains an infinite antichain. For n �ωwe build recursively
infinite antichains An ⊂ 2<ω such that

(1) An � { Tα p α � κ }
⊥,

(2) An+1 refines An, and
(3) ¹sº∩ An+1 is infinite for each s � An.

The construction starts with arbitrary suitable A0. If An is defined, choose
an infinite antichain Ys � { Tα p α � κ }

⊥, Ys ⊂ ¹sº for each s � An. Notice
that if s � AnrTα, then Ys∩Tα = ; and An+1 =

⋃

{Ys p s � An } is as required.
Once the construction is done enumerate An = { sn(i) p i �ω } and for

eachα � κ choose fα : ω→ω such that Tα is disjoint with { sn(i) p i > fα(n) }
for each n � ω. Since κ < cov∗ tr(M ) ≤ d there is g : ω→ ω not domi-
nated by any fα. We can now choose an increasing chain { tn p n �ω } such
that tn � { sn(i) p i > g(n) }. The choice of tn+1 ⊃ tn is possible because
of condition (3). Moreover if g(n) ≥ fα(n) for some n � ω and α � κ,
then tm � Tα for every m≥ n. Thus Y = { tn p n �ω } � { Tα p α � κ }

⊥ and
π(Y ) 6= ;, a contradiction.

Now we can conclude:

Proposition 15 (Hrušák–Zapletal [34]).
(1) cov∗ tr(S ) = c.
(2) cov∗ tr(Kσ) = d.
(3) cov∗ tr(M ) = covM .
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(4) cov∗ tr(L ) = b.

Proof. IfH ⊆ tr(S ) is of size less than c, there is x � 2ωr
⋃

{π(H) p H �H }
which witnesses that H is not hitting. For tr(Kσ) the equality follows
from covKσ = d and Proposition 12. The tr(M ) case is Proposition 14.
The last item follows from Proposition 12 and fin×fin≤K tr(L ).

For many standard forcings the trace ideals are, in fact, Katětov ho-
mogeneous. This means that when determining destructibility via the
Katětov order, we do not really need to consider the restrictions of the
trace ideals.

Lemma 16. Let I be an ideal onωω and let a ⊆ω<ω such thatπ(a) =ωω
Then tr(I )� a ≤K tr(I ). If I is an ideal on 2ω, we get tr(I )� a ≤KB tr(I )

Proof. We may assume that ; � a. Define a function f : ω<ω → a by
declaring that f (t) is the largest element of a ∩ { t� n p n �ω }. Notice
that since π(a) =ωω, the preimage of no point contains an infinite chain,
and in the case of 2ω the function f is fin-to-1 (use compactness). For
b ⊆ a we get π

�

f −1[b]
�

= π(b) and f is the desired morphisms.

Definition 17. Let I ,J be ideals on ωω. We say that I is continuously
Katětov below J ; I ≤CK J , if there is a continuous Katětov morphism
witnessing I ≤K J .

Proposition 18 (Meza-Alcántara [45]). Let I ,J be ideals on ωω. If
I ≤CK J , then tr(I )≤K tr(J ).

Proof. Let F : ωω→ωω be the continuous Katětov morphism witnessing
I ≤CK J . Define f : ω<ω → ω<ω as f (s) =

⋂

f
�

[s]
�

� |s| for s � ω<ω.
We claim f is a Katětov morphism witnessing tr(I )≤K tr(J ). Indeed, if
a ⊆ ω<ω and x � π

�

f −1[a]
�

, then F(x) � π(a) due to the continuity of
F , and consequently π

�

f −1[a]
�

⊆ F−1 [π(a)].

Proposition 19. The ideals tr(S ) and nwd are Katětov–Blass uniform, the
ideals tr(Kσ) and tr(L ) are Katětov uniform.

Proof. Every uncountable Borel subset of 2ω contains a copy of the Cantor
set, everyKσ positive Borel subset ofωω contains a copy of a superperfect
tree [36], every L positive Borel subset of ωω contains a homeomorphic
copy of a Laver tree [10], and the result for tr(S ), tr(Kσ) and tr(L )
follows by the previous lemmas. Finally if a � nwd, then it contains a
copy of the rationals.

Proof of Theorem 6. If P destroys any ideal, it has to add reals. If r � 2ω

is a new real, the set { r� n p n �ω } destroys tr(S ). If a new unbounded
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branch inωω is added, the branch witnesses that tr(Kσ) is destroyed. For
the other implication see Corollary 13.

It is easy to see that if P adds a dominating real, then it destroys both
fin× fin and tr(L ). Since the Laver forcing adds a dominating real, it
destroys fin×fin and by Theorem 10 and Proposition 19 fin×fin≤K tr(L ).
Lemma 8 now states that if tr(L ) is destroyed, fin×fin is also destroyed.
And if fin×fin is destroyed, there is an infinite partial function f : A→ω
which is almost disjoint with each element of (fin×fin)∩ V . In particular,
g <∗ f for every g : A→ω, g � V , and there is a new dominating real.
Finally a new almost disjoint real obviously destroys ED, and if P

destroys ED, it makes V∩ωω meager, hence it adds an eventually different
real (see e.g. [4, Lemma 2.4.8]).

We now get the following characterizations.

Proposition 20 (Brendle–Yatabe [12]). Let I be an ideal on ω. The
following are equivalent.

(1) Sacks forcing destroys I.
(2) Every forcing which adds a real destroys I.
(3) I ≤K tr(S ).

Proposition 21 (Brendle–Yatabe [12]). Let I be an ideal on ω. The
following are equivalent.

(1) Miller forcing destroys I.
(2) Every forcing which adds an unbounded real destroys I.
(3) I ≤K tr(Kσ).

Proposition 22 (Hrušák [28], Kurilić [38]). Let I be an ideal on ω. The
following are equivalent.

(1) Cohen forcing destroys I.
(2) I ≤K nwd.

Theorem 10 characterizes destructibility of ideals for forcings PI using
the Katětov order. It turns out that for many standard ideals we can, in
fact, use the Katětov–Blass order instead. Brendle and Yatabe [12] called
this property of ideals a very weak fusion.

Definition 23. Let I be a σ-ideal on ωω such that PI is proper and has
the continuous reading of names. We say that I has a very weak fusion if
for every ideal J on ω the following conditions are equivalent.

(1a) There is a condition B � PI which forces that J is not tall.
(1b) There is a � tr(I )+ such that J ≤K tr(I )� a.
(2) There is a � tr(I )+ such that J ≤KB tr(I )� a.
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The equivalence of (1a) and (1b) is of course exactly Theorem 10, so
the ideal has a very weak fusion if these conditions imply (2).

Proposition 24 (Brendle–Yatabe [12]). The ideals S ,M , N , andKσ do
have a very weak fusion.

Proof. Suppose that PI (I being one of our ideals) destroys an ideal J
on ω. We are searching for a � tr(I )+ and a fin-to-1 Katětov morphism.

Cohen forcing;M . Let s �ω<ω be a condition that forces that Ẋ is a
name for a set in J ⊥. We can recursively find set a ⊆ ¹sº which is dense
in ¹sº, and a 1-to-1 function f : a→ ω such that t � f (t) � Ẋ for each
t � a. It is obvious that a � tr(M )+ and it is easy to check that f is a
Katětov morphism.

Sacks forcing; S . Let p ⊆ 2<ω be a Sacks tree that forces that Ẋ is
a name for a set in J ⊥. We will use a fusion-like construction. For all
s � 2<ω recursively define Sacks trees ps with stem ts � 2<ω, and f (ts) �ω
such that

• p; ≤ p,
• pu < pv for v ⊂ u � 2<ω,
• tsá0 and tsá1 are incomparable in 2<ω,
• ps � f (ts) � Ẋ ,
• f (tu) 6= f (tv) for u 6= v � 2<ω.

Again a = { ts p s � 2<ω } � tr(S )+, f : a → ω is 1-to-1, and it is easy to
check that f is a Katětov morphism.

Miller forcing;Kσ. The proof is similar to the case of the Sacks forcing,
just use the appropriate fusion for the Miller forcing.

Random forcing; N . Let p ⊆ 2<ω be a tree such that [p] has positive
Lebesgue measure and forces that Ẋ = { ẋn p n �ω } is a name for a set in
J ⊥. By the usual proof of the forcing being ωω-bounding we may assume
that there are finite sets Fn and hn : Fn→ω for n �ω such that

• Fn is a finite maximal antichain in p,
• Fn+1 refines Fn,
• p ∩ ¹sº � ẋn = hn(s) for each s � Fn.

Find a set W � [ω]ω such that hn[Fn]< hm [Fm] for each n, m �W , n< m.
Let a =

⋃

{ Fn p n �W } and f =
⋃

{hn p n �W }; π(a) = [p] �N + and f
is fin-to-1. The fact that f is a Katětov morphism is, same as for the other
ideals, easy to check.

There are many other important results on destroying ideals which will
not be explicitly used in the present paper. Let us however mention at
least a couple of these.
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Theorem 25 (Laflamme [39]). Every Fσ ideal can be destroyed without
adding unbounded reals.

Theorem 26 (Laflamme [39]). Every Fσ ideal can be destroyed with a
forcing which preserves P-ultrafilters.

Theorem 27 (Zapletal [59]). Every Fσ ideal can be destroyed without
adding unbounded or splitting reals.

Let us provide here a definition of a forcing which has the properties
stated in the previous theorem, this definition comes from [26]. Let
I be an Fσ ideal and let I = Fin(ϕ) for some lower semicontinuous
submeasureϕ. The forcing Pϕ consists of finitely branching trees T ⊂ω<ω
ordered by inclusion, which fulfill the property that for each n �ω there
are only finitely t � T such that ϕ ({ i p tái � T })< n.

These results imply that ideals which are Katětov below an Fσ ideal are
relatively easy to destroy. Ideals which do not have an Fσ ideal ≤K-above
them are called Laflamme. In fact, being Laflamme is equivalent to being
not extendible to an Fσ ideal.

Lemma 28. An ideal I on ω is Laflamme iff there is no Fσ ideal J ⊇ I.

Proof. Suppose there exists an Fσ ideal K = Fin(ϕ) given by a lower
semicontinuous submeasure ϕ and a Katětov morphism f witnessing
I ≤K K. For n �ω let define a closed set Cn =

�

X ⊆ω p ϕ
�

f −1[X ]
�

≤ n
	

.
Now J =

⋃

{Cn p n �ω } is an Fσ ideal containing I.

The case of the density zero ideal Z is quite more complicated.

Theorem 29 (Raghavan–Shelah [51]). The density zero ideal Z can not
be destroyed without adding unbounded reals, and cov∗Z ≤ d.

Theorem 30 (Raghavan [49]). If a forcing destroys the density zero ideal
Z, then it adds a dominating real or a real which is not promptly split. In
particular Z can not be destroyed by a Suslin c.c.c. forcing without adding
dominating reals.

For the definition of a promptly split real see [49].

Question 31 (Hernández-Hernández–Hrušák [26]). Is cov∗Z ≤ b a the-
orem of ZFC?

2. Destroying MAD families

Our main focus is investigating destructibility of MAD families. We say
that a MAD family A is destroyed in a generic extension if it is no longer
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maximal, that is the ideal is I(A) is destroyed. The results summarized
so far give us the following.

Proposition 32. Let A be a MAD family.
(1) [28] If |A|< c, then A is Sacks indestructible.
(2) [12] If |A|< d, then A is Miller indestructible.
(3) [28, 38] If |A|< covM , then A is Cohen indestructible.

Proof. We have cov∗ I(A) = |A|, and the proposition follows from Proposi-
tions 20, 21, and 22 combined with (1) of Lemma 8.

Since it possible to construct a MAD family inside any given tall ideal,
there are always MAD families which are destroyed whenever a real is
added. For example, every MAD contained in tr(S ) is of this sort. The
existence of indestructible MAD families is more interesting.

Problem (Steprāns [57]). Is there a Cohen indestructible MAD family?

Problem (Hrušák [29]). Is there a Sacks indestructible MAD family?

These families are known to exist under several additional assumptions,
but it is currently unknown whether they exist in ZFC.

The following proposition follows from the fact that every AD family is
Katětov below fin×fin,

Proposition 33. If a forcing P adds a dominating real, then P destroys
every MAD family.

Definition 34. We call a MAD family A tight if for every
�

Xn � I(A)
+ p n �ω

	

there is B � I(A) such that B ∩ Xn is infinite for each n �ω.

Tight MAD families were first considered by Malykhin who called them
of ω-MAD families [42]. Notice that in the definition of tightness we can
equivalently demand only that all the intersections B ∩ Xn are nonempty
instead of infinite.

Tightness implies Cohen indestructibility, the other implication is only
partially correct.

Proposition 35 (Malykhin [42], Hrušák–García Ferreira [31], Kurilić [38]).
Let A be a MAD family.

(1) If A is tight, then A is Cohen indestructible.
(2) If A is Cohen indestructible, then there is X � I(A)+ such that A� X

is tight.



INDESTRUCTIBILITY 15

Proof. Let A be a tight MAD family, we will show that I(A) 6≤K nwd.
Let f : Q→ ω be a candidate for a Katětov morphism, {Un p n �ω } be
a base of open sets of Q. If f [Un] � I(A) for some n � ω, the f is not a
Katětov morphism so suppose this is not the case. Since A is tight, there
is B � I(A) such that B ∩ f [Un] is infinite for each n �ω. Thus f −1[B] is
a dense set, f −1[B] � nwd.

To prove the second statement, assume that A has no tight restrictions,
we show that the Cohen forcing destroys A. For all s �ω<ω recursively
define sets XS � I(A)

+ such that {X sán p n �ω } witnesses that A� X s is
not tight. The construction can start with X; =ω. Let c �ωω be a Cohen
real, let X be an infinite pseudo-intersection of

�

X c�n p n �ω
	

. The set X
is forced to be almost disjoint with all elements of A; for every A �A the
set { s �ω<ω p |A∩ X s|<ω } is dense.

Consequently tight MAD families exist if and only if Cohen indestruc-
tible MAD families exist. On the other hand, Cohen indestructibility does
not in general imply tightness. A Cohen indestructible MAD which is not
tight can be constructed e.g. under CH.

Lemma 36 (Hrušák–García Ferreira [31], Kurilić [38]). Let A be an AD
family of size less than b. For every

{Xn p n �ω } ⊆ I(A)+

there exists B �A⊥ such that |B ∩ Xn|=ω for each n �ω.

Proof. Since b ≤ a, the family A has no MAD restrictions, and we may
assume that {Xn p n �ω } ⊆ A⊥ and the set consists of pairwise disjoint
elements. For A �A let fA : ω→ω be a function such that A∩ Xn ⊆ fA(n).
Since |A|< b, there is a function g : ω→ω dominating every fA for every
A �A. Now B =

⋃

{Xnr g(n) p n �ω } is the desired set.

We say that MAD families in a given class exist generically if for every
AD family A of size less than c there is a MAD family B ⊇A in the given
class.

Proposition 37 (Kurilić [38], Hrušák–García Ferreira [31]). If b= c, then
tight MAD families exist generically.

Proof. Given an AD family A of size less than c, just keep extending A by
adding elements obtained by an application of Lemma 36 while keeping
track of all possible witnesses for non-tightness.

Proposition 38 (Guzmán–Hrušák–Martínez-Ranero–Ramos-García [22]).
There is an AD family of size b which cannot be extended to a tight MAD
family.
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Proof. Fix a bijection b: ω<ω → ω and a set X ⊂ ωω of size b which is
not contained in any σ-compact set. For f �ωω define

A f =
�
⋃

{b ( f � n) } × f (n) p n �ω
	

.

LetA0 = {Ax p x � X } and notice thatA0 is an AD family onω×ω of size b.
Notice also that for every g �ωω the set N(g) =

�

f �ωω p
�

�g ∩ A f

�

�<ω
	

is σ-compact. For each n �ω choose a countable AD family Cn on Cn =
{n } ×ω and let A = A0

⋃

{Cn p n �ω }. Now A is an AD family of size
b and Cn � I++(A) for each n � ω. Whenever a set B intersects Cn for
every n �ω, we can find a function g ⊆ B, g �ωω, and x � X rN(g). I.e.
B ∩ Ax is infinite. However Ax ∩ Cn is only finite for each n �ω, and the
set {Cn p n �ω } witnesses that no MAD extension of A can be tight.

Corollary 39 (Guzmán–Hrušák–Martínez-Ranero–Ramos-García [22]).
Tight MAD families exist if and only if b= c.

We will look now into the generic existence of other MAD families.

Definition 40. Let J be a tall ideal on ω. We define a(J ) to be minimal
size of an AD family A such that A∪A⊥ ⊆ J .

The next Lemma is just a straightforward application of the definition.

Lemma 41. Let J be a tall ideal on ω, A be an infinite AD family of size
less than a(J ), and f : ω→ω be a fin-to-1 function. There exists an AD
family B ⊇A, |A|= |B| and B � I(B) such that f −1[B] � J +.

Proof. If the choice A= B does not work, C =
�

f −1[A] p A �A
	

is an AD
family contained in J of size less than a(J ). There is B � C⊥ ∩ I+ and we
can put B =A∪ { f [B] }.

Proposition 42 (Guzmán–Hrušák–Martínez-Ranero–Ramos-García [22]).
Let I be a σ-ideal on ωω that has a very weak fusion and tr(I ) is Katětov–
Blass uniform. Then PI indestructible MAD families exist generically if and
only if a(tr(I)) = c.

Proof. Every MAD family extending a witness of a(tr(I)) is contained in
tr(I ) and must be destroyed by PI . On the oder hand, if an AD family is
smaller than a(tr(I)) = c, then we can extend it to a MAD family A by
applying Lemma 41, making sure there is no Katětov–Blass morphism
witnessing A≤KB tr(I ).

In particular we are getting a(tr(M )) = b. A variation of the covering
number will be useful for studying these invariants.
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Definition 43. Let J be a tall ideal on ω. We define cov+(J ) to be
smallest size of a family H ⊆ J such that for each X � J + there is H �H
such that X ∩H is infinite.

Clearly cov+(I) ≤ cov∗(I) and cov+(I) ≤ a(I). We say that a set
A⊂ 2<ω is off-branch if π(A) = ;. Every off-branch set is in tr(S ).

Lemma 44. The minimal size of a family B of off-branch sets such that for
every A � tr(S )+ there is B � B such that |B ∩ A|=ω, is cov+ tr(S ).

Proof. Since every set in tr(S )+ has an infinite off branch subset, there is
nothing to prove if cov+ tr(S ) = c. Assume this is not the case andH is the
witness for cov+ tr(S ). There is a set of prefect trees { Tα ⊆ 2<ω p α � c }
such that { [Tα] p α � c } is a partition of 2ω. Since

�

�

⋃

{π(H) p H �H }
�

�< c,
there is α such [Tα]∩π(H) = ; for each H �H. The set of splitting nodes
of Tα is isomorphic to 2<ω, the sets Tα ∩H are off-branch and as required
in the Lemma (in an isomorphic copy of 2<ω).

Proposition 45 (Guzmán–Hrušák–Martínez-Ranero–Ramos-García [22]).

covM ≤ cov+ tr(S )

Proof. Let A of size less than covM be a set of off-branch sets in 2<ω, we
will find B � tr (S )+∩A⊥. Represent the Cohen poset as the end-extension
order on the set of finite initial subtrees of 2<ω. There are countably many
dense set which force that the generic object is a Sacks tree. For A �A let
DA be the set of all finite tress T such that ¹sº∩A= ; for every s which is
a maximal node of T . Since each such A is off-branch, every DA is a dense
set in the Cohen forcing. We defined < covM many dense subsets of the
Cohen poset, so there exists a filter intersecting them all. Our set B is the
Sacks tree which is the union of this filter.

Corollary 46 (Brendle–Yatabe [12]). If covM = c, then Sacks indestruc-
tible MAD families exist generically.

Proposition 47 (Guzmán–Hrušák–Martínez-Ranero–Ramos-García [22]).
If a≤ a(tr(S )), then there is a Sacks indestructible MAD family.

Proof. If a< c, use Proposition 32. If c= a= a(tr(S )), use Corollary 46.

Question 48 (Guzmán–Hrušák–Martínez-Ranero–Ramos-García [22]).
Is a≤ a(tr(S )) a ZFC theorem?

A positive answer for this question would provide a solution to the
problem of Hrušák.
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3. Shelah–Steprāns ideals

We turn our attention now towards the following major open problems.

Problem (Roitman, see e.g. [46]). Does d=ω1 imply a=ω1?

Problem (Brendle–Raghavan [8]). Does b= s=ω1 imply a=ω1?

Since both the cardinal invariants b, s are provably smaller or equal
to d, see e.g. [5], the two problems are not independent. The general
consistency of d< a has been established by Shelah [54] and later ω1 <
s< b< a was shown to be consistent by Fischer and Mejía [18]. However,
these results were not achieved by a standard linear forcing iteration and
the method does not seem to help to resolve the stated problems. The
problems appear to be interconnected with the following question. Given
a MAD family A, is there a proper forcing destroying A while preserving
dominating families/unbounded families/splitting families?
A natural idea would be to prove that every MAD family is contained

in an Fσ ideal and use Theorem 26 to destroy it. This however does not
work, Laflamme proved that under CH there is MAD family which cannot
be extended to an Fσ ideal, see [39]. Let us also mention some results on
destructibility of MAD families.

Theorem 49 (Hrušák–García Ferreira [31]). (CH) For any proper ωω-
bounding forcing P of size c there exists a P-indestructible, Cohen-destructible
MAD family.

Shelah proved the following important result [53], see also [11].

Proposition 50 (Shelah [53]). Every MAD family can be destroyed by a
proper forcing that does not add dominating reals.

And recently Guzmán and Kalajdzievski proved in [24] the following.

Proposition 51 (Guzmán–Kalajdzievski [24]). Every MAD family can
be destroyed by a proper forcing that does not add dominating reals and
preserves P-ultrafilters.

By the results of Brendle and Raghavan [11] the result of Shelah is
tightly connected with the Mathias–Příkrý poset M(I), and the link be-
tween the properties of the ideal I and the forcing M(I). The following
definition turned out to be the key for understanding this phenomenon.

Definition 52. Let I be an ideal on ω. A set X ⊆ [ω]<ω is called I-
universal if for each I � I there is s � X , s ∩ I = ;. The collection of all
I-universal sets is denoted (I<ω)+.
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This terminology is adopted from Laflamme [40] who used the term
universal in connection with the dual filter, sets were called F -universal
for a filter F . We will also use a modification of this notion.

Definition 53. Let I be an ideal on ω. A sequence 〈Xn ⊆ [ω]
<ω p n �ω 〉

is called an I-universal γ-sequence if for each I � I for all but finitely many
n �ω there is s � Xn, s ∩ I = ;.

The question of adding dominating reals by the Mathias–Příkrý was first
investigated by Canjar [13]. Assuming d= c, he constructed a maximal
ideal I such that the poset M(I) does not add dominating reals. Ideals
with this property were later called Canjar ideals [21], for further results
see e.g [6, 14, 17, 20, 25, 33]. We will state an equivalent combinatorial
property as a definition.

Definition 54. An ideal I on ω is called Canjar (or Menger) if for every
sequence 〈Xn ⊆ [ω]

<ω p n �ω 〉 of I-universal sets there exist Yn � [Xn]
<ω

such that
⋃

{Yn p n �ω } is an I-universal set.

Definition 55. An ideal I on ω is called Hurewicz if for every sequence
〈Xn ⊆ [ω]

<ω p n �ω 〉 of I-universal sets there exist Yn � [Xn]
<ω such that

⋃

{Yn p n � a } is I-universal for every a � [ω]ω.

Every Hurewicz ideal is Canjar. It is easy to see that Fσ ideals do have
these properties. On the other hand, there are no other analytic Canjar
ideals; Arkhangel’skĭı proved [1] that all Menger sets of reals are already
Fσ.

Theorem 56 (Hrušák–Minami [33], Chodounský–Repovš–Zdomskyy [14]).
Let I be an ideal on ω. The following are equivalent

(1) The ideal I is Canjar.
(2) The ideal I is a Menger subspace of the Cantor space 2ω.
(3) The forcing M(I) does not add dominating reals.

Theorem 57 (Chodounský–Repovš–Zdomskyy [14]). Let I be an ideal on
ω. The following are equivalent

(1) The ideal I is Hurewicz.
(2) The ideal I is a Hurewicz subspace of the Cantor space 2ω.
(3) The forcing M(I) preserves all unbounded families of the ground

model, i.e. it is almost ωω-bounding.

In fact, for Hurewicz ideals the Mathias–Příkrý forcing even preserves
certain splitting families, this fact was first observed by Zdomskyy1. We

1Personal communication.
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say that S ⊂ ω block splits a set of pairwise disjoint sets { Zn p n �ω } if
|{n �ω p Zn ⊂ S }| = |{n �ω p Zn ∩ S = ;}| = ω. We say that S ⊆ P (ω)
is a block splitting family if for every pairwise disjoint set Z of finite sets
there is S � S which splits Z . Every block splitting family is automatically
splitting and P (ω) is a block splitting family.

Proposition 58 (Zdomskyy). If I is a Hurewicz ideal on ω, then the
Mathias–Příkrý forcing forcing M(I) preserves block splitting families.

Proof. Let S be a block splitting family and let Ṗ = { ṗn p n �ω } be a set
of names for pairwise disjoint finite sets. We may assume that each ṗn is
forced to be disjoint with n. For n �ω let Xn be set of all t � [ωr n]<ω

such that for each s ⊆ n there exists F s
n(t) � [ω]

<ω and I s
n(t) � I such

�

s ∪ t, I s
n(t)

�

� pn = F s
n(t).

Claim. For each n �ω the set Xn is I-universal.

This can proved using a folklore argument, for I � I in 2n many steps de-
fine anv-increasing sequence

�

t i � [ωr I]<ω p i � 2n
	

and a⊆-increasing
sequence

�

I i
n(t i) ⊇ I p i � 2n, I i

n(t i)∩ t i−1 = ;
	

such that the conditions
�

s ∪ t i, I i
n(t i)

�

decide ṗn to be some F i
n(t i). �

Since I is Hurewicz we may find
�

Yn � [Xn]
<ω
	

as in the definition of
the Hurewicz property. Let Zn =

⋃�

F s
n(t) p s ⊆ n, t � Yn

	

for n �ω. Since
each Zn is finite and disjoint with n, there exists b � ωω such that the
sets Zn are pairwise disjoint when n ranges over b. Let S � S be a set
block splitting { Zn p n � b }, we show that it is forced that S block splits
Ṗ. Pick any k �ω and a condition (s, I) �M(I), we will find n≥ k and a
stronger condition which forces that ṗn ⊆ S. We may assume that s ⊆ k.
Define a = {n � br k p Zn ⊂ S }, this set is infinite. Since

⋃

{Yn p n � a } is
an I-universal set, there is n � a and t � Yn such that t ∩ I = ;. Thus the
condition (s, I) is compatible with

�

s ∪ t, I s
n(t)

�

and can be extended to
force that ṗn = F s

n(t) ⊆ Zn ⊂ S. The argument showing that S is forced to
be disjoint with ṗn for infinitely many n �ω is exactly the same.

With destroying MAD families in mind Aurichi and Zdomskyy proved
the following theorems.

Theorem 59 (Aurichi–Zdomskyy [2]). (CH) or (MA) There exists a Cohen-
indestructible MAD family which is not Canjar.

And also the converse.

Theorem 60 (Zdomskyy [60]). It is consistent that every tight MAD family
is Hurewicz. In particular, this does hold in the Laver model.
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The rest of this survey is a preview of the forthcoming paper [7], discuss
here the results and we include proofs of a few simple statements for
completeness. For the other proofs see the the cited paper. The notion
of Shelah–Steprāns MAD families was introduced by Raghavan [50], it
is related to the notion of a strongly separable MAD family which was
introduced by Shelah and Steprāns in [55]. We first study the Shelah–
Steprāns property for general ideals.

Definition 61. An ideal I on ω is called Shelah–Steprāns if for every
I-universal set X there exists an infinite Y � [X ]ω such that

⋃

Y � I.

An equivalent reformulation of the definition gives us that the ideal I
is Shelah–Steprāns if for every X ⊆ [ω]<ωr ; there is either I � I which
intersects all elements of X or I contains infinitely many elements of X .

Lemma 62 (Brendle–Guzmán–Hrušák–Raghavan [7]). Let I,J be ideals
on ω such that I ≤K J . If I Shelah–Steprāns, then J is also Shelah–
Steprāns.

Proof. Let f be the Katětov morphisms between I and J , and let X be
an J -universal set. First notice that X ′ = { f [s] p s � X } is an I-universal
set; for each I � I there is s � X disjoint with f −1[I] � J , i.e. f [s] � X ′

is disjoint with I . Since I is Shelah–Steprāns, there is Y ′ � [X ′]ω such
that A=

⋃

Y ′ � I. Now f −1[A] � J is a set which contains every s � X for
which f [s] � Y ′.

Proposition 63 (Brendle–Guzmán–Hrušák–Raghavan [7]). Every non-
meager ideal on ω is Shelah–Steprāns.

Proof. Let I be a non-meager ideal and let X ⊆ [ω]<ωr; be an I-universal
set. Since fin ⊆ I there is an infinite Y � [X ]ω which consists of pairwise
disjoint sets. The set M = {A⊆ω p y ⊂ A for infinitely many y � Y } is
dense Gδ, i.e. there exists I � I ∩M and I is Shelah–Steprāns.

There are also meager Shelah–Steprāns ideals, the prototypical example
is the ideal fin×fin. In fact, this example is critical for the Borel ideals.

Proposition 64 (Brendle–Guzmán–Hrušák–Raghavan [7]). A Borel ideal
I is Shelah–Steprāns iff fin×fin≤K I.

The Shelah–Steprāns property can be also expressed in topological
terms; asking for existence of sets separating the ideal and its dual.

Proposition 65 (Brendle–Guzmán–Hrušák–Raghavan [7]). An ideal I is
Shelah–Steprāns if and only if there is no Fσ set F ⊂ P (ω) such that I ⊆ F
and I∗ ∩ F = ;.
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And we can use [56, Corollary 1.5] to deduce the following.

Proposition 66 (Brendle–Guzmán–Hrušák–Raghavan [7]). If I is Shelah–
Steprāns ideal, then I cannot be extended to an Fσδ ideal.

In particular every Shelah–Steprāns ideal is Laflamme. An interesting
property of Shelah–Steprāns ideals is that these ideals are very much
indestructible.

Proposition 67 (Brendle–Guzmán–Hrušák–Raghavan [7]). Shelah–Steprāns
ideals are Cohen indestructible and random indestructible.

In fact, the proposition does hold for many general forcing notions.
Assuming a suitable determinacy condition, definable proper almost ωω-
bounding forcings which have the continuous reading of names do not
destroy Shelah–Steprāns ideals. For details see [7] (as with all the other
results concerning the Shelah–Steprāns property).
We will say that an AD family A is Shelah–Steprāns if the ideal it

generates I(A) is Shelah–Steprāns. Notice that every Shelah–Steprāns
AD family is automatically MAD; if B � A⊥, then the singletons of B
form an I(A)-universal set. We already know that such MAD families
are Cohen indestructible, in fact, Shelah–Steprāns MAD families are even
tight [7]. A cardinality assumption again implies generic existence of
Shelah–Steprāns MAD families.

Proposition 68 (Minami–Sakai[47]). If p= c, then Shelah–Steprāns MAD
families exist generically.

On the other hand, unlike other types of MAD families with various
combinatorial properties, Shelah–Steprāns MAD families are consistently
known not to exist.

Theorem 69 (Raghavan [50]). It is consistent with ZFC that there are no
Shelah–Steprāns MAD families (and b= c).

Shelah–Steprāns MAD families are indestructible by many definable
forcings. Every MAD familyA is of course destroyed by the Mathias–Příkrý
forcing M(I(A)). Surprisingly, for Shelah–Steprāns MAD families this
forcing does not add dominating or unsplit reals.

Proposition 70 (Brendle–Guzmán–Hrušák–Raghavan [7]). Every Shelah–
Steprāns MAD family A is Hurewicz. In particular the Mathias–Příkrý
forcing M(I(A)) is c.c.c., does not add unsplit nor dominating reals (is even
almost ωω-bounding), and destroys A.
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We will define one more combinatorial property of ideals and MAD
families. It is one of the strongest properties of MAD families considered
in the literature.

Definition 71 (Brendle–Guzmán–Hrušák–Raghavan [7]). An ideal I on
ω is called raving if for every I-universal γ-sequence {Xn p n �ω } (see
Definition 53) exists I � I such that [I]<ω ∩ Xn 6= ; for all but finitely
many n �ω.

It is easy to see that every raving ideal is Shelah–Steprāns. We will say
that a MAD family A is raving if the ideal I(A) is raving.

As usual, the property is inherited upwards in the Katětov order.

Lemma 72 (Brendle–Guzmán–Hrušák–Raghavan [7]). Let I,J be ideals
on ω such that I ≤K J . If the ideal I is raving, then J is raving as well.

Proof. The proof is identical to the proof of Lemma 62.

Shelah–Steprāns and raving MAD families can be constructed using
the so called parametrized diamond principles ◊(b) and ◊(d) introduced
in [48, 27]. These principles can be interpreted as a strengthening of
statement that the corresponding cardinal invariant is equal to ω1 by
adding a certain ‘guessing’ component. These diamond principles do
typically hold in standard models whenever the corresponding cardinal
invariant is ω1, see [48].

The following theorem is in particular a strengthening of the fact that
◊(b) already implies a = ω1. The problem of Roitman in certain sense
questions whether the guessing component of the parametrized diamond
is necessary for this implication.

Theorem 73 (Brendle–Guzmán–Hrušák–Raghavan [7]).
◊(b) There is a Shelah–Steprāns MAD family.
◊(d) There is raving MAD family.

The canonical approach to get a MAD family with strong combinatorial
properties is to add one with forcing using countable approximations. Let
P-MAD be a poset consisting of countable AD families on ω ordered by
reverse inclusion. It is easy to see that this is σ-closed forcing adding a
MAD family.

Proposition 74 (Brendle–Guzmán–Hrušák–Raghavan [7]). The generic
MAD family added by P-MAD is raving.

Proof. Let B = {Bn p n �ω } be an condition in P-MAD forcing that X =
{X i p i �ω } is a universal γ-sequence. (We may assume that each X i is



INDESTRUCTIBILITY 24

nonempty.) For i � ω denote Ei = i ∪
⋃

{Bn p n< i }. Find an interval
partition { Pn p n �ω } ofω such that if i � Pn, then X i contains an element
si disjoint with En. Notice that A =

⋃

{ si p i �ω } � B⊥ and B ∪ {A} is
a condition in P-MAD which forces that A is in the generic MAD and A
contains an element of X i for every i �ω.

Genericity of certain objects over the morel L(R) is sometimes possible
to express in combinatorial terms. The study of this phenomenon was
initiated by Todorcevic (see [16]) and further studied e.g. in [41, 15].
However, the case of the P-MAD forcing is not yet fully understood.

Problem (Brendle–Guzmán–Hrušák–Raghavan [7]). Is there a combina-
torial characterization of P-MAD generic family A or the ideal I(A) over
L(R)?

References
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